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ANNOTATION

The problem of escape and diffusion of hydrogen and deuterium
atoms from the thermosphere of the Earth is solved by the Monte Carlo
method for the model of a stationary, flat atmosphere. The concen-
tration profiles which are cobtalined are compared with a numerical
solution of the diffuslon equation. The question of the violation
of the Maxwell velocity distribution of H atoms 1s analyzed, and
the effect of thils viclation on the magnitude of the escape [lux and

concentration profiles 1s considered.
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HEAT ESCAPE AND DIFFUSION OF HYDROGEN AND DEUTERIUM
IN THE THERMOSPHERE OF THE EARTH

Yu. G. Malama

Introduction

The phenomenon of escape of light atoms from the gravitational /3%
field of a planet and the diffusion flux which arises as a result
determine to a large extent the concentration profile of these atoms
in the thermosphere and exosphere. The usual method for the theo-
retical determination of concentration profiles of small components
consists of formulating a model of the atmosphere with subsequent
solution of the diffusion equation [1l, 2], which, taking turbulence
into account, has the form:

_ Se: -"'.:D;L [%ﬁ“ %’: '-F.(ifafi)ﬁ.ri %]‘D iy T Q[I]

HdZ T H{ T dE (1)

Here, n Dl’ dl’ S are, respectively, the concentration, coeffi-

l,
clents of diffusion and thermal diffusion, and escape flux of atoms

&

of the small component in the atmOSphere;‘TE\is the turbulent dif-

fuslon coefficient; T is the temperature of the atmosphere; Hl =

kT/mlg énd H = kT/mg are the altitude scales of the small component

#
Numbers in the marglin indicate pagination in the original foreign
text.



AY
and the atmosphere, respectively; g 1s the acceleration of gravity;

m, is the mass of atoms of the small component; m is the average mass

1
of the atmospheric particles._ The well known Jeans [3] formula is
usually used for the flux”SéM

o lt

; S _ _‘hi(zc) w:: (-Ec) | 2 AN
Wy [M_)]‘ [,»;_,.H (i)]exp[ Hi(g,] ()

where';glis the critical level, defilned from the condition:

[N -1, | (3)

and Nﬁfis the macrcscopic cross section for an atom of the small
compeonent colliding with particles of the atmosphere.

At-altitudes up to Z ~ (200 - 300) km, where the effective
Knudsen numbers K = A/H << I (X is the mean free path), Equation (1} /4
is undoubtedly wvalid. However, with the approcach to Z = Zc’ where

by definition K = 1, we are in principle outside the region of appli-
cability of the hydrodynamic description [4], and thus it is diffi-
cult to obtain an estimate, within the framework of hydrodynamics,

of the error which arises in the use of Eguation (1).

The Jeans formula (2) comes in for criticism also. Two assump-

tions underlie the derivation of this formula: (1) for all Z < Zos

the Maxwell velocity distribution is preserved for atoms of the small
component, and (2} atoms with velocitiles satisfying the escape con-
dition experience no collisions above a critical level. It is evi-
dent that use of these assumptions rust lead to an overestimate of
the escape flux.

These difficulties may be overcome by solving the problem of
escape and diffusion of light atoms of the small component with the
help of the Monte—Carlo method {5 - 12], which énablés one to find
a physically preclse solution for all Knudsen numbers and for any

deviaticns from the Maxwell—Bolfzmann,distribution.



Kastner [5] studied the diffusiocn of H atoms in an atmosphere
of N2 with barometric altitude distribution, without taking into ac-

count the effect of;gravity on the motion of f{he H atoms. From his
results, it follows, 1n particular, that already for K % 0.003, the
effective diffusion coefficient is about two times less than the
value which follows from kinetic theory; howevér; the methodologlical
errors tolerated in [5] makes this conclusion, whiéh is so radicecal
for hydredynamilcs, doubtful.

In [6 - 10], fundamental attention was given to obtalning a
correction to the Jeans formula (2). Of these works, only [9, 10]
obtained values of the escape flux which were close to each other.
The discussions|in [9, 13, and 14] on the cause of the discrepancies
did not lead to any definite conclusioﬁs. The required clarity was
supplied by Brinkmann [10], who pointed out errors allowed by the

authors of [5 - 7,.9] in generating certain random quantities.

At the same time, while there are no theoretical objections to
the purely Monte Carlo procedures used in [10] and subsequently in
[11, 12], there are, in our view, well known objections to the phy-
sical formulation of the problem in these works. In fact, the atmos-
phere in [10 - 12] was approximated by a uniform layer of 0 gas
atoms. In reply to a remark by Liwshitz and Singer [7] on the un-
reality of the model, Brinkmann [10] has pbinted out that the degree
of violation ¢f the Maxwell velocity distribution for H atoms is
defined by the "optical™ thickness of the layer, calculated from its
upper boundary, and, as a consequence of this, the models cof the at-
mosphere with uniform and barcometric distributlons of the fundamental
gas are physically equivalent. If one views the goal of the Monte
Carlo calculations as being only to obtain a correction to the Jeans
" Formula 1(2), then the point of view of the authors of [10 - 12] is
Justified. However, as was dndicated above, a check of the applica-
bility of the diffusion equation (1) 18 of significant interest,
and in this case the nonuniformity of the atmosphere plays a deci-

alive role.



Thus, the formulation of the Monte Carlo part of the problem
must be, in-our opinion, broader than in (10 - 12], and should be
as follows: it 1s necessary to calculate the escape flux and concen-
tration profile for the atoms which are of interest to us, i.e., the

atoms of the small.componeni 1in the region Zmin <72 Z Zmax’ and 1t

is desirable that the temperature and concentration profiles of the
fundamental components of the atmosphere correspond sufficlently : /6
closely to realiﬁy. Concerning the choice of boundaries for the

layer of atmosphere, one can say the following. Since with a de~

crease of Zmin’ the number of collisions experienced by an atom and,

thus, the calculation time rapidly increase (in a number of varia-
ticns, it increases exponentially}, there is no advantage to placing

Zmin,at €he base of the thermosphere. At the same time, the values

of Zm. must be such that the hydrodynamic and free-molecule

and Z
in m

ax

approximations in the regions 2 < Zm' and Z > Z

in 2 Lhnax® respectively,

are undoubtedly applicable. In addition, 1t is neceésary to choose
a sufficiently large optical thickness of the layer of atmosphere,
sucii that in the region immediately above'Zmin the Maxwell velocity

distribution is preserved for atoms of the small component.

Statement of the Problem

The main goal of the present paper is to check the agpplicability
¢f the hydrodynamic solution of the problem of escape and diffusion
of H and D atoms in the upper atmosphere of the Earth. Since, as in
the preceding papers, a stationary one-~dimensional model of the at-
mosphere is used, the numerical results presented below differ from
observational data obtained, for example, by measurements of the

Lyman-o line absorption.

It is assumed that below 90 km, turbulent diffusion leads to
complete mixing of the components of the atmosphere, and that above
90 km, there are no sources of H and D atoms. The temperature of

the atmosphere was considered constant for 90 km < Z < 120 km.: -



For the region Z > 120 km, the model of [15] was used:

Ty T [ B Hepey] |

(4)
-iér | £ Gz o0
T= EI:?—T(EO)] c(g—é)zgzo LS _i-:‘%{-g;jblz >
where ZO = 120 km, T_ 1s the model parameter, T(ZO) = 355° K,
(dT/dZ)Z=ZO = 20 deg/km. The model atmosphere consists of 0, 02, N2,

and Ar, with concentrations at altitude Z = 120 km, n{0) = 9.6
lO}O/CQB, n(OE) = 6.0 - 10l0/633, n(NE) = 4,5 . 1011/0%8, and n(Ar) =
2.2 109/CEJ3 [16]. For the remaining altitudes Z > 90 km, the con-

centrations of the fundamental components. were found by integration
of Equation (1) with Se = 0.

The trajectories of the H and D atoms were simulated by the
Monte Carlo method in the region 250 km < 2 < 1000 km [it was con-
sidered that for 90 km < Z < 250 km the diffusion equation (1) is
valid]. In this region, only 0 atoms -and N2 molecules are taken into

account (in some calculations He atoms were also added, but the re;
sults with these atoms were practically unchanged). As it is sub-
sequently proposed to combine the Monte Carlio results wiﬁh'the_sq1qu
tion of Equation (1), 1t was considered to be expedient to take into
account the direct effect of the force of gravity on the motion of
H and D atoms, in contrast to the previcus papers.

The‘entire region (Zmin’ Zmax) was divided into 30 layers,
within eachof which the acceleration of gravity, the temperature,
and the concentrations of all components of the atmosphere were con-

sidered constant. The collisions were assumed to be purely elastic;

for deuterium a solid sphere model was used, while in the case of |
hydrogen, two series of calculations were carried out — one with a
solid sphere cross section, and one with a cross secticn found be-
forehand by the WKB method [17]. 1In the first case, the numerical

values were:



s = 1.713 - 10715 cm? and & = 3.285 - 10715 cn?,
H-0y 3”'_“').

and in the second, the only difference from [10] was a modification /8

of the interaction potential with account of the four electronic

states of O(Bp) - H(ES) system [18, 19]. In particular, for the

average total O + H collision cross section, the approximation:

@ {__3_;3640“’%»«17 | U 0,20,

(5)

. g Y LI
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was obtalined, where u is the spee@,ngrelative motion, and A

L o8 - 105 cm/sec is the thermal speed of H atoms at T = 1030 K.

Let us now consider the choice of the calculational scheme.
Brinkmann [10] has shown that for small values of the parameter

mvz/EkT, where Vo i3 the minimum escape velocity, the application of

direct Monte Carlo simulation for the caleculation of the ezscape flux
is not effective. Instead of this, he proposed the method of
"mirror" particles, which is in essence a particular case of the
method of separating out the prinecipal part [20]. The latter is
based on representing the required scolution in the form of a sum.of

two terms [ = fl + fE’ where 1t is assumed that one of them, let us

Say-fi; ig either known beforehand or can be easily found by other
L

methods, If, furthermore, the correction f, can be found by the

2
Monte Cario method, then the problem as a whele 1s thereby solved.
The effectiveness of the method of separating ocut the principal part
increases with increaSing strength of the inegquality |f1| > ]fgf.

In the problem being considered, it is natural to choose as
the known funecticn not the uniform distribhtion, as in [10], but the

solution of the generalized barometric equation:

ANy 4P " - N, T . '
e e @) oA 8



which we denote by nio)(Z). The actual soclution is then equal to: /9

nE=EATEENTE (7)

(=)
1

for atoms of the small component with a scurce in the plane Z “'Z%ax

where the function n (Z), as in [10], is the concentration profile

The strength of this source 1s equal to:

S( )_’ n;o)(zlﬂqx) M(O)(—qu;{)? } (8)

where wéo) is defined by Relation (2).

Degscription of the Calculaticnal Methods

The positlon of an atom 1n phase space is characterized by the

coordinate 4 and by the velocity components Vs vy, v {(the introduc-

tion of three components instead of two is purely for calculational
convenlence). The sequence of a simulation of trajectories of atoms
céntributing to the profile n(—)fisméiGéﬁmgéioﬁm(ﬁbre7Ehm5éf§bme,

1 . ST LT e B
algorithms are presented in the appendix).

1. Injection of atoms into a layer of atmosphere in the plane

Z = 7 . Yor the velocity vector

; \7: ;U"B G w’-" 4 97 ﬁ“‘“‘vé 9 $in -l-f’ JMG}] 3

we have a distribution density which 1s proportional to the flux:

o o, e
P69 lodv= el (9)
R (VA 20

where A 1s the normalization constant, and the values Vo and T réfer

to the plane Z ='Z . . The value of cos §§ is generated according

to* cos 8§ = - /E s while the values of cos ¢, sin ¢ are generated
. e

Here and below, B is a running random number, uniformly distributed
in the interval (0, 1).



by the Neumann method [20]:"

o !’-ﬁ%:—_i-gw vl = Vit ;f " ;
em A2 | > o
with rejection for Ei + Eg > 1. The quantity v was generated 1n /10
accordance with Expressions (A-1) and. (A-2).
th

2. Simulatlon of the trajectory of an atom in the i layer
(Z, < 2 < Z.,
i

+1) In the general case, an-atom can elther experi-

ence a collision with cone of the particles of the atmosphere, or
leave this layer without collisions. The macroSeopic cross section

for collision of an atom with particles of the atmosphere is equal to:
) = Zé;'(t)>-”¢,a (11)

where Ny 4 is the concentration of the mth component in the layer 1,
2 .

Al . . . . .
and «1“) is the mean integral cellision cross section for an atom -

with a particle of type o. This cross section has the form [10]:

et VR
l (12)

Y '2TI' Mg FPE {2 Uidl
5= fm) fue g e

, 2 2
_ Using the notation K"ﬂ%%?/<‘zﬁ%’ H:-gig

peah it is convenient to write

the latter expression in the form:

: o0 = 2 v
2 2 4 (e i (gdﬂ
455 T =y e 5 1
W EEey 5 (13)

The values of ﬂi?%\were calculated beforehand for 48 discrete values
of K in the interval (0, 20), on the basis of which the values of
Qidgoﬂrand ‘d;oﬂ were found by linear interpolation. After estab-
1ishing the mean free path of an atocm:

t(_‘. = _[_-_:ijn]_i‘gﬂ F)\ (lu_)



the time t; of 1ts collisionless existence in the ith layer was cal-
culated (taking into account the force of graviﬁy). For ti < td,

it was considered that the atom had left thils layer without colli-

~
-
]....-l

sion, and it was given new coordinates:

Z!—— {E:_ , 'sz .1:'-2(3;‘(2[-‘,”?; )
Tz, 6220 (Zen- ) (15)

and components Vo,

(16)

In the cpposite case ti > tc, the values of Z and v, were alsc cal-

culated, and it was considered that a collision had taken place.

3. Generation of the collision. In fthe first stage, a selec-

tion of the particle partner type was made with respect to the col-
lisionj the corresponding probabilities follow directly from (11).

For the parameters of this_particlel, we have the distributlon density:

(17)

a2
‘ }y“l.\'l&,mmi:?‘:f): Aug, (LY 2».;«";{--m} 5

where A 1s an insignificant normalization constant. The algorithm

for generating the quantities Ve and cos o 1s presented in the ap-

pendix [Formulas (A-3) - (A-7)]. Although the formulas for calculat-
ing the resulfs c¢f the cellision 1tself are simple, they are somewhat

cumbersome, and will nct be presented here.

Steps 1 - 3, in fact, exhaust the algorithms for simulation of
the trajJectories. The boundary conditions, analogously to [10], are

reduced to a cutoff of the trajectorles either for Z .= Z or for

min?

simultaneous fulfillment of the conditions % = Z » V. For

v
max? = e

V<V, a mirror reflection of the particle 1is carried out:



The ‘quantities ZTi and ZT were calculated for N statistically

ip

independent trajectories, where Ty is the time spent by an atom 1in /12

the ith layer, Tip is the time spent by an atom in the phase cell

i vp) with volume AZ + Av, and the summation is carried out over
(=)

all the trajectories. In addition, the number ofieécaqing atoms N

(Z

was calculated. - After realization of all N trajectories, the con-

centration:
ey -l
Ny EFY=ler) T J (18)

was found for each layer (the velocity distribution functions were
determined similarly). Finally, the concentration profile:

' <) L) Ly
R [
and escape flux:
- , o ” ‘ ¢}
Se = MUY W= N (Frman) Ve G i f (20)

were calculabted in accordance with Expressions (7) and (8).

The escape flux found by the Monte-Carlo method was substituted
intec the diffusion eguation (1), which was then numerically inte-
90 km to Z = 800 km, with normalization Ny (90 km) =

1.5 - 10_4. For the coefficients Dl and o

grated from Z

1, np (90 km)

10 the

values corresponding to the solid sphere model [17] were used:

] i
D, = 024207 9;[)!2[‘2—(1.6@)/? 6. }

c;i :-—-O,_,?J@S ( 21)

where the summaticn is carried out cver all fundamental components

of the atmosphere,

» and the turbulent diffusion coefficient

6

m,
PP g
‘"(]ﬁigxfégt equal to the constant value D, = 5 + 10" cm/sec, recommended

in [21]. The concentraticn profiles calculated by the Monte Carlo

10



method were then joined with the solution of Equation (1) in the

region Z % 250 km.

Results of the Calculations

Let us first of all consider results of calculations for the
diffusion of atoms in a flat 1sothermal atmosphere' composed of a
single type of particle with an exponential distribution of concen-
tration along the Z axis. As in [5], the force of gravity is not.

taken info account here. Substitfuting the values of the flux S and

the concentration profiles nl(Z) of the small component obtained by

the Monte Carlo method into the formal diffusion equation:

S:jj?‘j% S (22)

it is possible to calculate the values of the effective diffusion

coefficient D for different Knudsed’numbers (Figure E)J It is seen

that the deviaticn of D from the wvalue Dg’ which follows from kinetic

theory [17], is about 10% for K = 0.4, and. about 35% for K = 10.

Let us now discuss results obtalned in the solution of the
problem of the escape and diffusion of H and D atoms. BSeveral cal-
culations were carried out for both of these small coﬁponents with
a sclid sphere model for five values of the exosphere temperature
(750, 1000, 1250, 1500, and 2000° X). In the case of hydrogen,

similar calculations were done with cross sections obtained by the

e
|-
LA

|

o0

WKB method. In addition, for T_ = 1500° K, a calculation was carried

out by the direct Monte Carlc simulation method. The %esults of the

simulation agreed with the results obtained by the method of separ-
ating out Ehéﬂﬁrincipal part, to within the limits of statistical

error.

Figure 2 shows "mirror" and real profiles of effective tempera-

tures for H atoms (solid sphere model) for three values of T_. The
mirror profiles can serve as a very sensitive ecriterilon for the

correctness of the choice of optical thickness for the layer of



atmosphere. It is seen that the maxwelllzation of the mirror atoms /LY

is totally completed in a distance of about 20 A from Zma Tﬁus,

<
the cholce of a layer, of atmosphere with thickness less than 20 A
can lead to physically incorrect results. In connection with this,
it can be noted that in the work of Brinkmann. [10], the tendency
towérd increase of the escape flux with a decrease of the layer
thieckness from 15 A to 10 A, and further to 5 A 1s clearly traced.

Such a significant optical thickness for the 1§yer Zmax - Zmin =

20 A, which is necessary for preserving the Maxwell distribution of

H atoms near ZIrl » 1s explained, of course, by the low effectiveness

in

in the|transmission of energy during collisions of particles with
very different masses. '

5(0)
e

'Figure 3 shows the correctlons to the Jeans magnitude for

the escape flux which were obtained with the Monte Caric method in
comparison with the data of [10, 11]. The completely satisfactory
agreement 1s explained, apparently, by the fact that the degree of
‘violation of the Maxwell distribution of H atoms at the altitude Z

depends only on the optical thilckness (Zm - Z)/A, and on the mass

ax
ratio for the atoms of the small component and the fundamental gas
of the atmosphere. The nonuniformity in the concentration of the
atmosphere does not affect these results. We also confirmed the-
conclusion by the authors of [10, 111 that the inaccuracy in deter-
mining the collision cross section i1Is weakly manifested in the mag-

(0)

e The presence of a weak minimum at

nitude of the ratic Se/S

T g 1250° K follows from our data. Although this minimum might be
completely explained by statistical error, its appearance is not
physically meaningless. In this connection, one can, apparently,

make an analogy with the violatlon of the Maxwell velocity distribu-

tion in chemically reactling gases. Analytic calculations using the /15

generalized Chapman-Enskog method and Monte Carlo calculaticns [22]

have distinctly shown the presence of a minimum in the temperature

(02",

dependence of the ratlio R/R s+ where R is the true reaction rate,

12



and R(D) is the 'reaction rate ﬁith the assumption that the Maxwell

veloclty distribution 1is preserved for the reacting particles.

Figure U4 shows concentration profiles for H atoms (solid sphere
model) for three values of T,- At low temperatures (curve 1), the
profiles calculated by the Monte Carlo method and those obtained by
direct integation of Eguation (1) coincide in practically the whole
region 250 km < Z < 800 km. This result is explained by the fact
that, for a small escape flux, the concentration profile for H atoms
is practically the same as the generalized barometric distribution,
wnich, as is well known, is valid for any Knudsen numbers.

A first glance, the concentration profiles at higher tempera-
tures appear strange: in the first place, one might expect that the
deviation of the Monte-Carlo profiles from the solutlon of Equation
(1) must increase with an increase of T, Secondly, another sign
for these deviations seems to follow from the results presented in
Figure 1. 1In faet, since the Monte Carlo values of the escape [luxes
Se were used in the integration of (1),_a decrease of the effective

‘diffusion coefficient with an increase of X should lead, despite
Figure 4, to more strongly negative gradients of the Monte Carlo

concentration prefile in comparison with the hydrodynamic¢ profile.

The indicated contradictions can, however, be explained by
analyzing Equation (1). Since for Z > 250 km, the turbulent diffu-
sion process plays no role, this egquation can be written in the form:

‘jl’k_. Lo %+1+ozi)r:¢ ! X (23)

For Z > 400 km, the third term on the right hand side of (23),
describing the process of thermal diffusion, is negligible, because
the atmosphere at such high altitudes is isothermal. However,
Equaticn (23) does not take into account the fact that the escape
of fast atoms Wwith v 2 v, leads to a violation of the Maxwell velo-
city distribution for H atoms, as a consequence of which a negative
gradient of the effective temperature of these atoms is established

13
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at altitudes Z > 400 km (Figure 2). As a result, a thermal diffusion
flux must arise from bottom to top, tending to level out the negative
gradient in the concentration of H atoms. Thus, the magnitude and
sign of the total Monte Carlo correction to the solution of Equation-
(23) depend both on the ratio of the separate corrections to the flux
gnd thermal diffusion terms on the right slde of this equation, and
on the absolute values of these fterms. AT low atmbspheric tempera-
tures, the quantity S_ is also small; as a consequence, one might)

expect fulfillment of the inequalility:

S L. - - &_ c{T E
Ty <Gty ITE

which explains the sign of the Monte Carlo correction for T, = 1500°
K. However, as the atmospheric temperature increases, so deces the

importance of the tern Se/Dl. Evidently, it -is precisely this which

explains the lesser values of the corrections for T = 2000° K, in '; _\
comparison with the case, T =:1500° K.

Profiles of the ratic of the deuterium concentrafion to the
hydrogen c¢oncentration for varicus wvalues of T, are shown on Figure

5., The increase in the values of nD/nH with the incresase df Too from

750 to 1250° K, and the decrease of these values upon further in-

crease of T to 2000° K, are in good agreement with the conclusions

of McElroy and Hunten {2]. The presence of maxima on the profiles /1
for all T, excluding the value 2000° K, is in gualitative agreement

with the data of measurements of Lyman-o line absorption [23], and

is explained, apparently, by the effect of separation by dififusion

of isotopes at high altitudes. The absolute values of the quantity
®BZhH for T_ = 1200° K presented in [23] are approximately an order

of magnitude larger than in the present paper. The cause of such
significant discrepancies might be, first, that the data of [23]

are not the result of direct observations (they are obtained, as the
authors note, as the result of the Introduction of several éssump—
ticns). In connectlon with this, it may be noted that the results
of spectroscopic measurements of the concentration of Dt ions at
altitudes of (500 - 3000} km give values close to the concentrations

14



of HY ions [24]. On the other hand, the one-dimensional, flat model
of the atmosphere used in our calculaticns is a crude approximation,

and this could strongly distort the results.

It seems to us that for development of this work, 1% 18 neces-
sary to give up the flat model of the atmosphere in the Monte Carlo
¢alculations, and to take into account, in addition, the diurnal
variations in the temperature and concentrations of the fundamental
compeonents of the atmosphere. It iz also evident that the method
described could be extended without difficulty to such planets as

Venus and Mars. ‘

The complexity of the structure of planetary atmospheres and
the multidude of physical and chemical processes which oceur in these
atmospheres make the use of analytic and traditional numerical meth-
ods extremely difficult. It is also impossible to disregard the
violations of thérmodynamie equilibrium which take place. In many
cases, these violations can significantly 1limit the region of appli-
- cability of these methods, which are based on a macroscopic descrip-
tion. For these reascns, the use cof Monte Cario simulation is ex-
tremely promising. Besides mathematical simplicity and suitabllity
for computer use, this method also has theoretical advantages. The
primary advantage is its indifference to the degree of violation of

thermodynamic equilibrium and to the values of the Knudsen number.

The author is grateful to V. B. Lecnas for attentlon to the

work and for useful advice.
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APPENDIX

~
[
\O

Although all of the algorithms presented by Brinkmann [10] for

the simulation of random quantities are correct, some of these algo-
rithms are not completely appropriate. The method of iﬂtegral proba-
bility, which 1s universally used by Brinkmann, frequently leads to
only an approximate selection of the random quantity with specified
distribution law. In addition, in/ & number of cases (for example,

in the generation of the parameﬁefs of colliding particles), the
application of this methoed requires large amounts of machine time.

In such situatlions, we have used other effective and.accurate methods.

For the random selection of the guantity v for the injected atom,
_ r
the transformation.x%r%%{f”ﬁ?)[ was used; this converts the velocity

part of Expression (9) into the density:

e e, I
. rxh X

S)i(x)clx—::.%rj: xe dx ;X200 ¢ (i-1)

- I"I"I'L’:’._‘ ,

‘z“ (AT L ‘

3 L3 l "i
From the form of (A-1l), it follows that with probab11ity_&?+%{J

the quantity x can be considered to be distributed with density
2 R ‘
v xe™¥ , and with probadility (n +'1)_l distributed with a density

av x3e'X . This 1s the basis for the choice:

E~€f‘(?1?’35]j/"‘ N (‘Z"*i)_i”?i
(A-2)

C“gﬂ?ﬁfé w‘?kq+1fis Pa

The latter expression follows from an exact method of generation an

n-dimenslonal normal law presented in [25].

The Kan* method [26] was taken as the basis of generating

the random quantities Yy and cos o, distributed according to the

*Translator‘s note. Transliterated from the Russian.
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density (17). Let us rewrite (17) in the form: /20

o AuEly o, Jz Cfomaly]
PUL, ool d)= gy Lrat) Aex_f’( g .

(A-3)

where the condition ¢ > 0 is imposed on the function ¢, and

q

@&%qu-¢;ié314for all u, v, > 0, and all values of the quantity v,
consldered as a parameter. In addition, it 1s desirable to select

o sucﬂ.that ;hpﬁudﬁ?fk#. The Kén method consists of\generating the
quantitﬁ Vi according to a denéity which is proportional to the ex-
pfegsibh in square brackets in (A-3), the generation of cos a in the
interval (-1, 1), and the calculation of u-ﬁ“ﬁ.&w}ﬂﬂzfand g(@

Further, the method of rejection is used: the generated values Ve

cos & are accepted with probability,Au@#hfiL

The Spe01f1c chclce of the function ¢ depends, naturally, on

“the form of the crosé Sectlon 64 uﬁ Thus, for the solid sphere
model in which the cross sectlon iz Independent of u, 1t 1s natural

to put ? @ﬁd@féJ?. The algorithm for generating the quantities v,

cog o was described in [22], and consists of the following:

a) the quantity vy, is generated according to the rule:

J {SEQ pa- (ﬁw?a)m(rrm)] ,J(J+7.q) ‘a},_

e s AL 2y
D) ‘eedd=4-2p41s generated,
¢) the guantity u is calculated; for
"_@fl}mr.,.) }—fss (A-5)

the generated values of Vs COS a are accepted.

17



In the opposite case, all operations are repeated with new Bi,

beginning with setp a).

In the case of cross section of the form

) iy, LUy,
G W= j ’ﬁ (A-6)
(Cfﬁff{%fdlzg,,
the Funection ¢ 1s put equal to
‘P(]&) .:: C(’J#?ji;"u",’w + f(%: ’ (A=T7)

S L

The detalls of the generation of the gquantities Vys COS a are very

similar to steps a) - ¢), and to save space tliey will not be pre-

sented here.

o U =

10.
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~Figure 1. Ratlo of effective diffusion coeffi-
cient D to the wvalue Dg following from kinetic
theory (21), as a function of Knudsen number K:

1, 2 — diffusion of atoms of mass my in a layer
of gas of dfoms with mass m, for, respectively,

mz/ml = 1, and mz/ml = 16
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Figure 2. Temperature as a function of altitude
fér T_ = 1000° K (1), T_ = 1500° K (2), and T =
20009 K (3): the solid curves are the tenpera- S
tures of the fundamental components of the atmos-
phere; the points and small circles are the ef-
fective temperature of mirror and real H atoms,
respectively, found from the corresponding dis-
tribution functions; the upper scale is the op-
tical thickness of the layer of atmosphere,

meazsured from Z
max
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Figure 3. Ratio of the escape flux Se’ found by
the Monte Carlo method, to the flux Séo)u(z)

as a function of the temperature of the exosphere
T :

[+4

1 — results of Brinkman [10] for hydrogen (WKR
cross section); 2 — results of Chamberlain and
Smith [11] for hydrogen (solid sphere cross sec-
tion); 3, 4, 5 — results of the present paper,
respectively, for hydrogen (solid sphere cross
section), hydrogen (WKB cross seectidn), and
deuterium (so0lld sphere cross section). The ver-
tical bars are standard deviations
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Figure 4. Concentration profiles for E atoms
with T, = 750° K (1}, T, =.1500° K (2), and
T = 2000° K (3): the curves are the results
of a numerical integration of Equation (1);
the points are the results obtalned by the
Monte Carlec method. The upper scale glves
Knudsen numbers for various T
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Figure 5. Profiles of the ratio of the con-

centrations of_dgyterium and hydrogen for

five values of T,j the numerical values for

90 km S Z £ 250 km were obtalned by sclution

of Equation (1),  while for 250 km < Z £

1000 km they were obtained by a Monte Carlo
: simulation
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